

QUESTION BANK2019b) Find
$$L^{-1}\left\{\frac{s^2}{(s^2+4)(s^2+25)}\right\}$$
, using Convolution theorem.[5M]8. a) Find the Inverse Laplace transform of $\frac{1}{s^2(s^2+a^2)}$.[5 M]b)Find $L^{-1}\left\{\log\left(\frac{s-1}{s+1}\right)\right\}$ [5 M]9. Use transform method to solve $(D^2+5D+6)y=5e^t$ where $y(0)=2, y^1(0)=1$ [10M]10. Solve the D.E $\frac{d^2y}{dt^2}+2\frac{dy}{dt}+2y=5\sin t$ using Laplace Transform given that[10M]

[10M]

UNIT II

Fourier Transforms

- 1. a) Find the Fourier sine transform of $e^{-|x|}$ Hence show that $\int_0^\infty \frac{x \sin mx}{1+x^2} dx = \frac{\pi}{2} e^{-m}, m > 0.$ b) Find the Fourier cosine transform of $2e^{-5x} + 5e^{-2x}$.
- 2. Find the Fourier transform of $f(x) = \begin{cases} a^2 x^2 |x| < a \\ 0 & |x| > a > 0 \end{cases}$ Hence show that $\int_0^\infty \frac{\sin x - x \cos x}{x^3} dx = \frac{\pi}{4}$.
- 3. a) Find the Fourier transform of $f(x) = e^{\frac{-x^2}{2}}, -\infty < x < \infty$ b) If F(p) is the complex Fourier transform of f(x), then prove that the complex fourier transform of f(x) cos xa is $\frac{1}{2}[F_s(p+a) + F_s(P-a)]$.
- 4. a) Find the Fourier cosine transform of $e^{-ax} \cos ax$, a > 0.
 - b) Find the Fourier cosine transform of $f(x) = \begin{cases} x & \text{for } 0 < x < 1 \\ 2 x & \text{for } 1 < x < 2. \\ 0 & \text{for } x > 2 \end{cases}$
- 5. Find the Fourier sine and cosine transforms of $f(x) = \frac{e^{-ax}}{x}$ and deduce that

$$\int_{0}^{\infty} \frac{e^{-ax} - e^{-bx}}{x} \sin sx \, dx = \tan^{-1}\left(\frac{s}{a}\right) - \tan^{-1}\left(\frac{s}{b}\right).$$

- 6. Find the Fourier sine and cosine transforms of $f(x) = e^{-ax}$, a > 0and hence deduce the integrals (i) $\int_0^\infty \frac{p \sin px}{a^2 + p^2} dp$ (ii) $\int_0^\infty \frac{\cos px}{a^2 + p^2} dp$
- 7. Find the Inverse Fourier sine transform of f(x) of $F_s(p) = \frac{p}{1+p^2}$
- 8. a) Find the finite Fourier sine transform of $f(x) = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \pi x, & \frac{\pi}{2} \le x \le \pi \end{cases}$

b) Find the inverse finite Fourier sine transform of f(x), if $F_s(n) = \frac{16(-1)^{n-1}}{n^3}$, where n is a positive integer and 0 < x < 8.

9. a)Find the Finite cosine transform of $f(x) = e^{ax}in(0, l)$.

b) Find the Inverse Fourier cosine transform f(x) if $F_c(n) = \frac{\cos(\frac{2n\pi}{3})}{(2n+1)^2}$ where 0 < x < 4.

- 10. a) Write the Inversse Fourier Transform.
 - b) Show that $F_s\{xf(x)\} = -\frac{d}{ds}\{F_c(s)\}.$
 - c) Write the formula for Finite Fourier cosine transform.
 - d) Find the Inverse Fourier sine transform f(x) if $F_s(n) = \frac{1 \cos n\pi}{n^2 \pi^2} 0 < x < \pi$.
 - e) Find the Fourier transform of f(x) defined by $f(x) = \begin{cases} 0 & -\infty < x < \alpha \\ x & \alpha < x < \beta \\ 0 & \cdots > 0 \end{cases}$

UNIT-III ALGEBRAIC STRUCTURES

- 1. Define group and an abelian group. Prove that the set Z of all integers with the binary operation * defined as a * b = a + b + 1, $\forall a, b \in Z$ is an abelian group.
- 2. a)Define and give an examples for group, semi group, subgroup &abelian group.
 b)Let s={a,b,c} and let *denotes a binary operation on 's' is given below also let p={1,2,3} and addition be a binary operation on 'p' is given below. show that (s,*) & (p,(+)) are isomorphism

*	А	В	С	(+)	1	2	3
А	А	В	С	1	1	2	1
В	В	В	С	2	1	2	2
С	С	В	С	3	1	2	3

- 3. a)Show that the set={1,2,3,4,5} is not a group under addition & multiplication modulo 6
 b) On the set Q of all rational number operation * is defined by a*b=a+b-ab.
 Show that this operation Q forms a commutative monoid.
- 4. a) Explain the concepts of homomorphism and isomorphism of groups with examples.

b) Let(*G*,*) and (*H*, Δ) be a groups and *g*: *G* \rightarrow *H* be a homomorphism. The the kernerl of g is a normal subgroup.

- 5 a)The necessary and sufficient condition for a non-empty sub-set H of a Group (G,*) to be a sub group is $a \in H, b \in H => a^*b^{-1} \in H$
 - b) Show that every homomorphic image of an abelian group is abelian.
- 6. a) Show that the set of all roots of the equation $x^4 = 1$ forms a group under multiplication.
- b) Showthat the set of all rational numbers forms an abelian group under the composition defined by

$$a * b = \frac{ab}{2}$$

7. a) In a group G for a,beG,o(a)=5, b \neq e and aba⁻¹=b². Show that o(b)=31.

b) Let $s = \{a, b\}$ be a set consider all possible permutations of S as $s_2 = \{P_1, P_2\}$ Show that $(s_2, *)$ is a permutation group.

8. a) Let $Z_5^* = \{[1], [2], [3], [4]\}$ in which $[1], [2], \dots$ have the same meaning as in Z_5 except that $Z_5^* = Z_5 - \{[0]\}$. Also let X_5 is multiplication modulo 5. Show that $g: Z_4 \to Z_5^*$ is given by g([0]) = [1], g([1]) = [2], g([2]) = [4], g([3]) = [3] defines a homomorphism from the group $(Z_4, +_4)to(Z_5^*, *_4)$. Hence show that g is group isomorphic.

b) Show that if a, b are arbitrary elements of a group G then $(ab)^2 = a^2b^2iff$ G is abelian.

- 9. a) Prove that the order of a subgroup of a finite group divides the order of the group ?
 - b) Prove that the kernel of a homomorphism from (G , *) to (H , Δ) is a subgroup of (G , *) .
- 10.(a) Define Monoid, Semi group?
- (b) Let $(Z_4+_4)G = \{1, -1, i, -i\}$ be a multiplicative group. Find the order of every element.
- (c) Define isomorphism of a group?
- (d) Define Normal group?
- (e) Define Homomorphism of a semi group?

UNIT IV

Introduction to counting

- (a)In how many ways can a committee of 5 teachers and 4 students be chosen from 9 teachers and 15 students with at least 2 students in each committee ?
 - (b) How many integral solutions are there to $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ where
 - (i) each $x_i \ge 2$? (ii) each $x_i > 2$?
- (a) How many numbers can be formed using the digits 1, 3, 4, 5, 6, 8 and 9 if no Repetitionsare allowed?
 - (b) Find the generating function for the sequence 1,1,1,3,1,1,....
- 3. (a) The question paper of mathematics contains two questions divided into two groups of 5 questions each. In how many ways can an examine answer six questions taking at least two questions from each group.

(b) How many permutations can be formed out of the letters of word "SUNDAY"? How many of these (i) Begin with S? (ii) end with Y? (iii) begin with S & end with Y? (iv) S &Y always together?

- 4. (a) In how many ways can the letters of the word COMPUTER be arranged? How many of them begin with C and end with R? How many of them do not begin with C but end with R?(b) out of 9 girls and 15 boys how many different committees can be formed each consisting of 6 boys and 4 girls?
- 5. a) Determine the number of positive integer $1 \le n \le 100$ and is not divisible by 2 , 3 , or 5

b) Solve $a_n = a_{n-1} + 2a_{n-2}$, $n \ge 2$ with initial conditions $a_0 = 0$, $a_1 = 1$

- 6. a) Solve a_n = 3a_{n-1} 3a_{n-2} + a_{n-3} with initial conditions a₀ = 0, a₃ = 3, a₅ = 10
 b) A survey among 100 students shows that of the three ice cream flavors vanilla, chocolate, strawberry 50 students like vanilla, 43 like chocolate, 28 like straw berry, 13 like vanilla and chocolate, 11 like chocolate and straw berry, 12 like straw berry and vanilla and 5 like all of them. Find the following.
- 7. (a) Find how many integers between 1 and 60 that are divisible by 2 nor by 3 and nor by 5.Also determine the number of integers divisible by 5 not by 2, not by 3.

b) out of 80 students in a class, 60 play football, 53 play hockey, and 35 both the games. how many students (i) do not play of these games. (ii) play only hockey but not football.

QUESTION BANK 2019

- 8. a) Applying pigeon hole principle show that of any 14 integers are selected from the set S = {1,2,3,....,25 } there are at least two whose seem is 26. Also write a statement that generalizes this result.
 - b) Show that if 8 people are in a room, at least two of them have birthdays that occur on the same day of the week
- 9. a) Determine the sequence generated by

 $f(x) = 2e^{x} + 3x^{2}$ (ii) 7 $e^{8x} - 4 e^{3x}$.

b) Solve the RR a_{n+2} - 2 a_{n+1} + $a_n = 2^n$ with initial condition $a_0 = 2$ & $a_1 = 1$.

- 10. (a) State Pigeon?
 - (b) State Multinomial theorem?
 - (c) Define permutation & Combination?
 - (d) State Generating Function?
 - (e) State Inclusion and Exclusion?

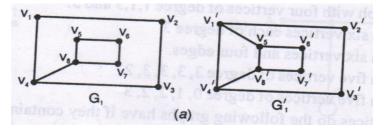
<u>UNIT-5</u> Introduction to Graphs

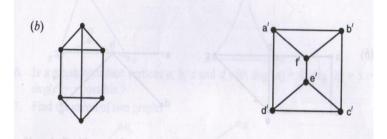
- a) Define isomorphism. Explain Isomorphism of graphs with a suitable example.
 b) Explain graph coloring and chromatic number give an example.
- 2. a)Explain about complete graph and planar graph with an example
 - b) Define the following graph with one suitable example for each graphs

(i) spanning tree (ii) sub graph (iii) induced sub graph (iv) spanning sub graph

- **3.** a) Explain In degree and out degree of graph. Also explain about the adjacency matrix representation of graphs. Illustrate with an example?
 - b) Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian circuit
- 4. a) Show that the maximum number of edges in a simple graph with n vertices is n (n-1)/2b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3.Find the number of vertices in G?
- **5.** a) Suppose a graph has vertices of degree 0, 2, 2, 3 and 9. How many edges does the graph have ?

b) Give an example of a graph which is Hamiltonian but not Eulerian and vice versa .


a) Let G be a 4 – Regular connected planar graph having 16 edges. Find the number of regions of G.


b) Draw the graph represented by given Adjacency matrix

	[1	2	0	1		0	1	0	1]
(\mathbf{i})	2	0	3	0	(ii)	1	0	1	0
(1)	0	2 0 3	1	1		0	1	0	1
		0				_1	0	1	0

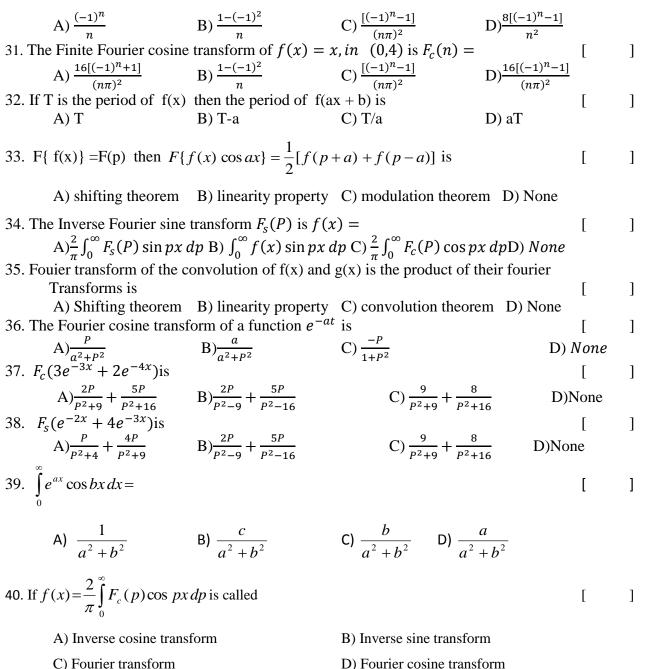
7. a) Show that in any graph the number of odd degree vertices is even .

b) Is the following pairs of graphs are isomorphic or not ?

- 8. a) Show that the two graphs shown below are isomorphic ?b) Explain about the Rooted tree with an example ?
- **9.** a) (i)Find the chromatic polynomial & chromatic number for K $_{3,3}$
 - (ii) Define Euler circuit, Hamilton cycle, Wheel graph?
 - b) Explain any 5 graphs with examples.
- **10.** a) Define regular graph.
 - a)State handshaking theorem.
 - b) Define Complete bipartite graph.
 - c) State Euler's formula.
 - d) Determine the number of edges in cycle graph C_n

		QUES	STION BANK 2019
/ Sala	ARTH GROUP OF IN th Nagar, Narayanava	ISTITUTIONS :: PUTTUR anam Road – 517583	
	<u>QUES</u>	FION BANK (OBJECTIVE	2
Subject with Code : Tran Course & Branch : B.Ter	c CE&AG		10
Year &Sem : II-B.Tech&		Regulation : R 1 RM CALCULUS-I	18
$1.L\{e^{-at}\} =$			[]
1	B) $\frac{a}{s^2 + a^2}$	C) $\frac{1}{s+a}$	D) $\frac{1}{s-a}$ []
A) $\frac{s}{s^2 + a^2}$	B) $\frac{a}{s^2 + a^2}$	C) $\frac{1}{s+a}$	D) $\frac{1}{s-a}$
3. $L{2} =$ A) $\frac{1}{s}$ 4. $L{Coshat} =$	B) $\frac{2}{s}$	C) $\frac{1}{s^2}$	[] D) 1
A) $\frac{s}{s^2 - a^2}$ $5. L\{e^{at} \sin bt\} =$	B) $\frac{a}{s^2 + a^2}$	C) $\frac{1}{s+a}$	D) $\frac{s}{s^2 + a^2}$ []
	B) $\frac{s}{(s-a)^2-b^2}$	$C) \ \frac{b}{\left(s-a\right)^2 + b^2}$	$D)\frac{b}{\left(s-a\right)^2-b^2}$
6. If $L{f(t)} = \overline{f(s)}$ then $L{e^{-1}}$	-atf(t) =		[]
A) $\overline{f}(s+a)$	- ()	C) $\overline{f}(as)$	$ \begin{array}{c} 1 \\ D \\ \left(s+a\right) \\ \begin{bmatrix} \\ \\ \end{bmatrix} \end{array} $
7. The Laplace transform of		~	[]
A) $\int_{0}^{\infty} e^{-st} f(t) dt$	B) $\int_{0}^{\infty} e^{-st} f(s) dt$	C) $\int_{0}^{\infty} e^{st} f(t) dt$	D) None
8. If $L^{-1}\left\{\frac{1}{s-2}\right\} =$			[]
A) $\frac{e^{-at}}{s}$	B) $\frac{3e^{-at}}{2}$	C) e^{2t}	D) $\frac{e^{-2s}}{2}$
9. $L{\sinh at} =$ A) $\frac{s}{s^2 - a^2}$	B) $\frac{a}{s^2 + a^2}$	C) $\frac{1}{s+a}$	D) $\frac{a}{s^2 - a^2}$

			QUESTION BANK 2019
10. Find the value of $L^{-\prime}$	$(5^{2}+3s+7) =$		[]
_ (B) $1 + 3t + \frac{7}{2}t^2$	<u>()</u> $1 - 3t - 7t^2$	D) None
$11. L\{k\} = 2^{L}$	\mathbf{D}	C) I <i>St Tt</i>	[]
	1	. 1	
A) $\frac{k}{s}$	B) $-\frac{1}{s}$	C) $\frac{1}{s^2}$	D) <i>k</i>
12. The value of $L^{-1}\left\{\frac{1}{s}\right\} =$			[]
(A) 1	B) 0	C) -1	D)None
13. $L\{e^{at}\} =$			[]
A) $\frac{1}{s^2 + a^2}$	B) $\frac{a}{a}$	C) $\frac{1}{s+a}$	D) $\frac{1}{s-a}$
5 1 4	$s^{2} + a^{2}$	s+a	s-a
14. $L\{e^{at} t^2\} =$		2	[]
A) $\frac{a}{(s-a)^2}$	B) $\frac{a}{(3)^3}$	C) $\frac{2}{(s-a)^3}$	D) $\frac{3}{(s+a)^3}$
	(s-a)	(s-a)	
$15. L\{e^{at} \cos at\} =$	s-h	h	[] h
A) $\frac{s-a}{(s-a)^2+b^2}$	B) $\frac{s-b}{(s-a)^2-b^2}$	C) $\frac{b}{(s-a)^2+b^2}$	$D)\frac{b}{\left(s-a\right)^2-b^2}$
16. If $L\{f(t)\} = \bar{f(s)}$, then L	$\sum \left\{ \frac{f(t)}{t} \right\} =$		[]
A) $\int_{s}^{\infty} \overline{f}(s) ds$	B) $\int_{0}^{\infty} \overline{f}(s) ds$	C) $\int_{0}^{\infty} \overline{f}(t) ds$	D) $\int_{0}^{\infty} \overline{f}(s) ds$
3		-∞	0
17. If $L{f(t)} = \overline{f}(s)$, then A) $\overline{f}(s)$	$\frac{L\{e^{au}f(t)\}}{B}$	$\bar{f}(s+a)$	L J D) None
18. If $L^{-1}\left\{\frac{4}{s-3}\right\} =$	<i>D</i>)) (0 <i>w</i>)		[]
(~ -)	$3a^{-at}$		o ^{-as}
A) $\frac{e^{-at}}{s}$	B) $\frac{3e}{s}$	C) $4e^{3t}$	D) $\frac{e^{-as}}{s}$
).		5
19. The value of $L^{-1}\left\{\frac{1}{(S+1)}\right\}$	\overline{a}) ⁵ $\Big\}$ ^{1S}		[]
$-at t^4$	at 1	t^4	at A
A) $e^{-at} \frac{t^4}{24}$	B) $e^{at}t^4$	C) $e^{at} \frac{t^4}{24}$	D) $e^{-at}t^4$
20. If $L{f(t)} = \bar{f}(s)$, then	$L{f(at)}$	·	[]
A) $a\bar{f}(s)$	$B\frac{1}{a}\overline{f}\left(\frac{s}{a}\right)$	C) $\bar{f}\left(\frac{s}{a}\right)$	D) None
$21. L\{\cosh 3t\} =$			[]
A) $\frac{s}{s^2 + 3^2}$	B) $\frac{a}{1}$	C) $\frac{1}{s^2 + 3^2}$	$D)\frac{s}{s^2-3^2}$
3 1 5	5 5	$s^{2} + 3^{2}$	5 5
22. Find $L\{e^t \sin t\}=$	$B)\frac{1}{s^2-1}$.	\sim s	[] D) $\frac{1}{(s-1)^2+1}$
A) $\frac{1}{s^2+1}$ 23. Find the value of $L\{t$		$C)\frac{s}{s^2+1}$	
A) $\frac{3}{s^2} + \frac{6}{s}$	$B) \frac{6}{s^4} + \frac{6}{s}$	C) $\frac{3}{s^2} - \frac{6}{s}$	[] D) None
$\frac{11}{s^2}$ s	3 3	s^2 s	Раде 1


			QUESTION BANK	2019
24. If $L^{-1}\left\{\frac{s}{s^2-2^2}\right\} =$			[]
(A) $\frac{1}{2}\sinh 2t$	B) $\frac{1}{2}\cos 2t$	C) sin 2 <i>t</i>	D) $\cosh 2t$	
25. Find the value of $L^{-\prime} \left\{ \frac{1}{6} \right\}$	$\left.\frac{1}{(s-a)^5}\right\} = _$	-	[]
A) $e^{at}t^4$	B) $e^{at}t^4/4$	C) $e^{at} \frac{t^4}{4!}$	D) $\frac{t^4}{4!}$	
A) $e^{at}t^4$ 26. If $L^{-\prime}{\overline{f}(s)} = f(t)$ then A A) $e^{-at}f(t)$	$L^{-1}\left\{\overline{f}(s+a)\right\} = \underline{\qquad}$	Chaat	[D) None]
27. If $L^{-1}\left\{\frac{1}{s^2 + a^2}\right\} =$	\mathbf{D}) \mathbf{e} $f(t)$	Cje	D) None]
(A) $\frac{1}{a}\sin at$	B) $\frac{1}{a}\cos at$	C) sin at	D) cos at	
28. Find the value of $L^{-\prime} \left\{ \frac{1}{s^2} \right\}$ A) $e^{-3t} - e^{-2t}$	$\left\{\frac{1}{2-5s+6}\right\} = $	_	[]
A) $e^{-3t} - e^{-2t}$ 29. $L\{c_1f_1(t) + c_2f_2(t)\} = c_1$			D) None	
$29. L(c_1 f_1(t) + c_2 f_2(t)) - c_1$ Is called	$L(J_1(t)) + C_2 L(J_{21}(t))$	This property in respect of	Laplace transforms]
A) Shifting property $30. L\{1\} =$	B) Distributive proper	rty C) Symmetric property	D) Linearity prope	erty
1	B) $\frac{2}{s}$	C) $\frac{1}{s^2}$	D) 1	1
A) $\frac{1}{s}$	$\frac{B}{S}$	$C/\frac{1}{s^2}$	D) 1	
$31. L\left\{\frac{1}{\sqrt{t}}\right\} =$]]
A) $\sqrt{\frac{\pi}{s}}$	B) $\sqrt{\frac{1}{s}}$	C) $\sqrt{\frac{2\pi}{s}}$	D) $\sqrt{\frac{s}{\pi}}$	
32.If $L^{-1}\left\{\frac{s}{s^2+a^2}\right\} =$				[]
(A) $\frac{1}{a}\sin at$	B) $\frac{1}{a}\cos at$	C) sin at	D) $\cos at$	
33. If $L^{-1}\left\{\frac{1}{2s-5}\right\} =$			[]
(A) $\frac{1}{2}e^{\frac{5t}{2}}$	$B) -\frac{1}{2}e^{\frac{5t}{2}}$	C) $e^{\frac{5t}{2}}$	$D)\frac{1}{2}e^{\frac{2t}{5}}$	
34. If $L^{-1}\left\{\frac{1}{s^n}\right\}$ is a possible of	only when n is		[]
A)Positive integer	B) Zero	C) Negative integer	D) All of thes	e
35.If $L^{-\prime}\{\overline{f}(s)\} = f(t)$ and	id then $L^{-1}\left\{\int_{s}^{\infty} f(\overline{s}) ds\right\}$ =	=	[]
A) tf(t)	B) $\frac{f(t)}{t}$	C) $e^{at}f(t)$	D)None	
36. If $L^{-1}\left\{\overline{f}(s)\right\} = f(t)$ and	$f(0)=0$, then $L^{-1}\left\{s\overline{f}\right\}$	(s) =	[]
Transforms and discrete ma	thematics			Page 12

			QUESTION BANK 2019
A) $f''(t)$ 37. $L\{5-3t-2e^{-t}\}=$	B) $f(s)$	C) $f'(t)$	D) $f^{1}(s)$
([]
A) $\frac{3s^2 + 2s - 3}{s^2}$	B) $\frac{3s^2 + 2s - 3}{s^2(s+1)}$	C) $\frac{3s^2 + 2s - 3}{s^2(s - 1)}$	$D)\frac{3s^2+2s+3}{s^2}$
38. $L\{t^3\} =$			[]
A) $\frac{6}{s}$	B) $\frac{6}{s^3}$	C) $\frac{6}{s^2}$	D) $\frac{6}{s^4}$
$39.\mathrm{If}L^{-1}\left\{\overline{f}(s)\right\} = f(t)\mathrm{and}$	$f(0) = 0$, then $L^{-1}\left\{s\overline{f}\right\}$	s) =	[]
(A) $f(t)$	B) $\frac{f(t)}{t}$	C) $\frac{f^{1}(s)}{s}$	D) $f^1(t)$
$40.\mathrm{If}L^{-1}\left\{\overline{f}(s)\right\} = f(t)\mathrm{and}$	d $L^{-1}\left\{\overline{g}(s)\right\} = g(t)$, then	$L^{-1}\left\{\overline{f}(s), \overline{g}(s)\right\} =$	[]
(A) $f(t)^*g(t)$	B) $f(s) * g(s)$	C) $\frac{f(t)}{g(t)}$	D)None

		QUE	STION BANK 2019
UN	<u> IIT - II</u>		
1. The Fourier transform of a function	f(x) is		[]
A) $\int_{0}^{\infty} f(x)e^{ipx}dx$	B) $\int_{-\infty}^{\infty} f(x)e^{ipx}dx$	C) $\int_{0}^{\infty} f(x)e^{-ipx}dx$	D) None
2.If F{f(x)} and G{g(x)} be the Fourie Where a and b are constants A) a F{ f(x)}+b F{g(x)}		g(x) then F{a f(x)+b g(x) C) b F{ f(x)}+a F{g(x)}	[]
3. The finite fourier sine transform of			[]
A) $\frac{\pi}{n}(-1)^{n+1}$	$\mathrm{B})\pi(-1)^{n+1}$	C) $\frac{\pi}{n}(-1)^n$	D) None
4. If $F{f(x)}=f(p)$ then the inversion f	ormula is	-	[]
A) $\frac{1}{2\pi} \int_{-\infty}^{\infty} f(p) e^{-ipx} dp$ B) $\frac{1}{2\pi}$	$\frac{1}{\pi}\int_{-\infty}^{\infty}f(p)e^{ipx}dp$ C) $\frac{2}{\pi}\int_{-\infty}^{\infty}f(p)e^{ipx}dp$ C) $\frac{2}{\pi}\int_{-\infty}^$	$\int_{-\infty}^{\infty} f(p) e^{-ipx} dp$ D) N	Ione
5. $F_{s}\{e^{-at}\} =$	\mathbf{p} p	c) a	[]
A) $\frac{p}{(a^2+p^2)^2}$ 6. If $F(p)$ is the Fourier transform of	B) $\frac{p}{a^2 + p^2}$ $f(x)$ then $E\{f(x-a)\}$	u ip	D) None
-			$\sum_{n=1}^{n} \frac{1}{n} \frac{1}{n} \frac{1}{n}$
A) $e^{ipa}F(p)$	B) $e^{-ipa}F(p)$	C) $e^{pa}F(p)$	D) $e^{-pa}F(p)$
7. Finite Fourier cosine transform c	20227		[]
$A)\frac{\sin n\pi}{n\pi}$	B) $\frac{\cos n\pi}{n\pi}$	C)sin n π	D)cos $n\pi$
8. If $F{f(x)} = F(p)$ then $F{f(ax)}$		$\left(\right)$	
A) $aF\left(\frac{p}{a}\right)$	B) $\frac{1}{a}F\left(\frac{a}{p}\right)$	C) $aF\left(\frac{a}{p}\right)$	D) $\frac{1}{a}F\left(\frac{p}{a}\right)$
9. Find $F_s\{2e^{-5x}\}=$			[]
A) $\frac{2p}{p^2+5^2}$	B) $\frac{5p}{p^2 + 2^2}$	C) $\frac{p}{p^2 + 5^2}$	D) None
10. Fourier cosine transforms of e^{-2x} i	s		[]
A) $\frac{p}{p^2 + 2^2}$	B) $\frac{2}{p^2 + 2^2}$	C) $\frac{-2p}{p^2+2^2}$	D) $\frac{2p}{p^2 + 2^2}$
11. Fourier sine transform of $f(x) =$	$\frac{1}{x}$ is		[]
A) $\frac{\pi}{2}$	B)π	C)0	D) None
12. For the function applying Fourier	transform it has to satisfy	condition	[]
A) dirichlet	B)euler	C)parseval	D) $\frac{1}{z-1}$
13. If F{f(x)}=f(p) then F[f(x/a)]=			[]
A)a f(ap)	B) 1/a f(p/a)	C) a f(p/a)	D) None
14.Fourier cosine transform of f(x)	$=e^{-x}$ is		[]

		QUE	STION BANK	2019
A) $\frac{1}{1+n^2}$	B) $\frac{1}{1-n^2}$	$C)\frac{1}{n^2}$	D) None	
15. Fourier cosine transform of $f(x)$	Ξp	p^2]	1
A) 0	B)1	C)-1/p ²	D) None	,
$16.\operatorname{Find} F_{\mathcal{C}}(f'(x)) = \underline{\qquad}$			[]
$A)-f(0)+F_C(P)$	B) -f(0)+ $pF_{s}(P)$	$C)F_C(P)$	D)None	
17. The fourier cosine transform of	$f(x) = \frac{e^{-ax}}{x}$ is		[]
A) $\frac{1}{2}\log(P^2 + a^2)$	B) $-\frac{1}{2}\log(P^2 + a^2)$	$C)\frac{1}{2}\log(P^2 - a^2)$	D)None	
18. The fourier sine transform of 2		2	[]
A) $\frac{2P}{P^2+25} + \frac{5P}{P^2+4}$	B) $\frac{2P}{P^2-25} + \frac{5P}{P^2-4}$	$C)\frac{10}{R^2+25} + \frac{10}{R^2+4}$	D)None	
19. $F_{S}{xf(x)} = $	r = 25 r = 4	r 725 r 74	[]
A) $-\frac{d}{dn}[F_c(p)]$	$B)\frac{d}{dm}[F_s(p)]$	C)f(0)	D)None	
20. Find f(x) if its Fourier sine trans	form is e^{-ap} .		[]
A) $\frac{2P}{\pi(a^2+n^2)}$	$B)\frac{2P}{\pi(a^2-n^2)}$	$C)\frac{2}{\pi}$	D)None	
21. Fourier cosine transforms of xe	n(a p)	п	[]
A) $\frac{a^2 - p^2}{(a^2 + p^2)^2}$	B) $\frac{a^2 + p^2}{(a^2 + p^2)^2}$	C) $\sqrt{2\pi}$	D)None	
22. If $F_c{f(ax)}=kF_c\left(\frac{p}{a}\right)$ then k =			[]
A) a	B) $\frac{1}{a}$	C)a ²	D)None	
23. The Fourier cosine transform o	$f f(x) = \begin{cases} k, if \ 0 < x < a \\ 0, if \ x > a \end{cases}$		[]
$A)\frac{K\sin ap}{p}$	$B)\frac{k\cos ap}{p}$	C)0	D)1	
24. The Fourier sine transform of $\frac{e}{2}$	$\frac{-ax}{x}$ is		[]
A)tan ⁻¹ $\frac{a}{p}$	B)tan ⁻¹ $\frac{P}{a}$	C)tan ⁻¹ a	D)tan ⁻¹ P	
25. Find $F_c\{xf(x)\}=$			[]
A) $-\frac{d}{dp}[F_c(p)]$	$B)\frac{d}{dp}[F_s(p)]$	C)f(0)	D)None	
26. The Finite Fourier sine transfor	m of $f(x) = \frac{x}{\pi}$, in $0 < \infty$	$x < \pi$ is	Ι]
A) $(-1)^{n+1/2}$	B) $(-1)^{n-1/2}$	C) (-1)	D) $(-1)^{n+1}\frac{1}{n}$	
27. The Finite Fourier sine transfor $n+1$	m of $f(x) = 1$, in $0 < $	$x < \pi$ is	l]
A) $\frac{1-(-1)^{n+1/2}}{n}$	B) $\frac{1-(-1)^2}{n}$	C) (-1)	D) $\frac{1-(-1)^n}{n}$	
28. The Finite Fourier cosine transf	form of $f(x) = 1$, in (<i>"</i> []
A) $\frac{16[(-1)^n+1]}{(n\pi)^2}$	B) <i>π</i>	C) $\frac{[(-1)^n - 1]}{(n\pi)^2}$	D)0	
29. The Fourier sine transform of a	0	0	[]
A) $\int_0^\infty f(x) \sin px dx$ C) $\int_0^\infty E(B) e^{ipx} dx$	0	$\int f(x) \sin px dp$		
C) $\int_0^\infty F(P) e^{ipx} dx$ 30. The finite Fourier cosine transfe	D) Not D_{x} in $(0,2\pi)$ is	UILE]]
			L	-

QUESTION BANK 2019

- C) Fourier transform

UNIT III

ALGEBRAIC STRUCTURES

1.	The algebraic system	(S,\circ) is called is t	the operation o is associative		[]
	A) Group	B) Monoid C) Set	mi group D) Abelian group			
2.	If (<i>I</i> ,+) is a Monoid	where <i>I</i> is the set of ir	ntegers and + is the operation of	of additi	on	
	Then the identity ele	ement is			[]
	A) 1	B) 0	C) -1	D) No	ne	
3.	Let g be a homomorp	phism from (X,o) to (Y	$(x,*)$. If $g: X \to Y$ is one-to-o	ne and	onto	
	then g is called				[]
	A) Bijection	B) Isomorphism	C) Epimorphism	D) M	onomo	orphism
4.	Let S be a nonempty	set and $P(S)$ be its po	ower set. The algebras			
	$(P(S), \cup)$ and $(P(S), c)$	ר) are			[]
	A) Monoid	B) Group	C) Abelian group	D) all		
5.	If the operations * is	distribution over addit	ion for any a,b,ceI then a*(b+	c)=	[]
	A)(a*b)*c	B)a+(b*c)	C)(a*b)+(a*c)	D)noi	ne	
6.	By cancellation law f	or any a,b,c∈I and a≠0) a*b=a*c =>		[]
	A)b=c	B)a	C)a=c	D)c		
7.	For m=1, f:A \rightarrow A suc	h an operation is calle	d		[]
	A)unary operation	B) binary operation	C)m-nary operation D)non	ie		
8.	For m=2, f:A \rightarrow A such that A	ch an operation is calle	ed		[]
	A)unary operation	B) binary operation	C)m-nary operation D)non			
9.	The operation * will I	be a binary operation of	on G if and only if	G	[]
	A)acG	B)beG	C)a*b€G	D)non	e	
10.	The inverse of the ide	entify element is the			[]
	A)inverse element	B) Identity element	C)idempotent element	D) ni	lpotent	element
11.	A group with addition	n binary operation is k	nown as []			
	A)Abelian group	B)Groupoid	C)subgroup	D)add	itive g	roup
12.	A group with multipl	ication binary operation	on is known as []			
	A)Abelian group	B) additive group	C) multiplicative group	D)n	one	
13.	A group G is said to l	beif the commutation	ative law holds []		

			UESTION BANK	2019
A)groupoid	B)semigroup	C)Abelian	D)none	
14. In order word $(s,0)$) is a semigroup if for a	ny x,y,zɛs then xo(yoz)=	[]
A)(xoy)*z	B)(xoz)oy	C)(xoy)oz	$D)x^*(y^*z)$	
15. semigroup isomorp	phism satisfies]]
A)on-to	B)one-one	C)one-one&on-to	D)none	
16. semigroupephimor	rphism satisfies		[]
A)on-to	B)one-one	C)one-one&on-to	D)none	
17. Every homomorph	nic image of an abelian	group is	[]
A)sub group	B)semigroup	C)abeliangroup	D)none	
18. If H is any subgrou	up of a group G then Hl	H=	[]
$A)H^{-1}$	B)e	C)1	D)H	
19. A non-empty subs	et H of a group (G,*) a	subgroup iffwhere acH,b	εH []
A)abeH	B)a*beH	C)a*b⁻¹€H	D)a ⁻¹ beH	
20. An algebric structu	ure (s,*) which has an id	dentity element and also sati	isfies closure,	
associative law is o	called a		[]
A)subgroup	B)groupoid	C)monoid	D)none	
21. The identity eleme	ent (if it exists) of any a	lgebraic structure is	[]
A)multiple	B)unique	C)one	D)zero	
22. If $a^*e=a$ then e is a	calledelement for t	he operation	[]
A)left identity	B)Right identity	C)identity	D)none	
23. If e*a=a then e is	calledelement for	the operation	[]
A)left identity	B)Right identity	C)identity	D)none	
24 The nonzero set of	of integers under multip	olication is	[]
A)monoid	B)semigroup	C)Group	D) all	
25. The order of the id	lentity element of a grou	up G is	[]
A)1	B)2	C)0	D)3	
26. The inverse of 4 ir	n the multiplicative grou	up of integers modulo 7 is	[]
A)3	B) 2	C) 4	D) 5	
27. Associative law is			[]
A) A $B = B A$	$\mathbf{B})\mathbf{A} = \mathbf{A}$	$\mathbf{C})(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{B}\mathbf{C})$	D) B = B	
28. The order of 4 in	the group of addition n	nodulo 12 is	[]
A)3	B)7	C)8	D)10	
29. The group with c	commutative isgr	oup.	[]
A) an abelian	B) symmetric	C)alternating D)co	ommutative	

			QUESTION B	ANK	2019
30. If G is a group, H is	s a sub group of G and	$a,b \in G$, then the relation	ion $a \equiv b \pmod{1}$	H) is []
A)Reflexive	B) Symmetric C) ret	flexive & symmetric D) an equivalenc	e rela	tion
31. The order of alternati	ng group , if the set S	has n elements is		[]	
A) n	B) n!	C) n/2	D) n! /2		
32. The order of group of	f all one- one & onto	mappings from S to S	there the order	of S is	n, and is.
				[]
A) n	B) n!	C) n/2	D) n! /2		
33. If G is a group and a,	$b \in G$, then $(ab)^{-1} =$			[]
A) $a^{-1}b^{-1}$	B) ab^{-1}	C) $a^{-1}b$	D) $b^{-1}a^{-1}$		
34. The solution of $ax = b$	in a group G, wherea	,b∈ G is		[]
A) ab^{-1}	B) $a^{-1}b^{-1}$	C) $a^{-1}b$	D) a ⁻¹		
35. If e_1 and e_2 are two ide	entity elements of a gro	oup G, then		[]
A) $e_1 < e_2$	B) $e_1 = e_2$	C) $e_1 > e_2$	D) e ₁ e ₂		
36. If G is a finite group	of order n , and $a \in G$	then		[]
A) $e^n = a$	$\mathbf{B})\mathbf{a}^{n} = \mathbf{a}$	C) $a^n = e$	D) $a^n \neq e$		
37. If the order of an element	ment $a \in G$ is n and the	e order of a ⁻¹ is m, ther	1	[]
A) m< n	B) m > n	C) m = n	D) m = an		
38. The order of 4 in the	additive group of integ	gers mod 6 is		[]
A)2	B)3	C)5	D)4		
39. The inverse of 8 in th	e multiplicative group	of integers mod 11 is		[]
A)7	B)9	C)5	D)6		
40.If G is a group and a,b	$0 \in G$, then			[]
A) $a^2b = a^2b^2$	B) $(a.b)^2 = a^2.b^2$	C) $a.b = a^2 \cdot b^2$	D) $a.b \neq a^2 b^2$		

				QUESTION BANK	2019
		<u>UNIT IV</u>			
1.	Enumerating r-permu	utations without repetitio	ns $P(n,r)=$	[]
	$\mathbf{A})\frac{n!}{r!(n-r)!}$	B) <u><i>n</i>!</u> <u><i>r</i>!</u>	C) $\frac{n!}{(n-r)!}$	D) None	
2.	How many 3 digit nu	umber can be formed usir	ng the digits 1,3,4,5,6	,8 and 9 []
	A) 7*6*5	B) 3!	C) $\frac{7!}{3!}$	D) 7 ³	
	The series $1 + x + x^2 + A)\sum x^r$ If a student is to answ	$= B)\sum(-1)x^{r}$ wer true or false question	$C)\sum(-a)^{r}x^{r}$	[D)none]
+.	the number of ways,		s and mere are rive qu	[]
	A) 10	B) 16	C) 32	D) 5	1
5.	,	ligit words, if repetitions	,	, , , , , , , , , , , , , , , , , , ,]
	A) 576	B) 676	C) 52	D) 650	-
5 .		ers, that can be formed fr	om the digits $1,2,3,4$,		
	if there will be no rep		C	[]
	A) 24	B) 6	C)840	D) 120	
7.	The three-digit numb	pers, that can be formed f	rom the digits 1,2,3,4	,5 if repetitions are a	allowed is
				[]
	A)125	B) 120	C) 60	D) 36	
•	The number of ways	sitting five people aroun	d a table is	[]
	A) 24	B) 120	C) 312	D)720	
).	The number of ways	of drawing 2 cards with	replacement from a d	eckof 52 cards is	
				[]
	A)2704	B) 1326	C) 52	D) 2652	
0.	The number of ways	of drawing 2 cards with	out replacement from	a deck of 52 cards	
	Is			[]
	A)2704	B) 1326	C) 52	D) 2652	
1.	There are 12 red ball	ls and 8 blue balls in a bo	ox. The number of wa	ays of selecting 5 rec	d balls and 3
	blue balls is			[]
	A) 42126	B)44352	C) 12118	D) 24352	
2.	The number of positi	ve integer solutions of x-	+y+z=6 is	[]
	A) 24	B) 20	C) 10	D)15	
		pers, that can be formed f			

			QUESTION BANK	2019
allowed is			[]
A) 125	B) 60	C) 45	D) 90	
14. The number of non-r	negative integer solution	ns of x+y+z=9 is	[]
A) 55	B) 45	C) 60	D)72	
15. The number of positi	ve integer solutions of	x+y+z<7 is	[]
A) 20	B) 60	C) 120	D) 90	
16. The number of perm	utations of the word SU	JCCESS is	[]
A) 960	B) 420	C) 120	D) 840	
17. The number of perm	utations of the word HA	APPY is	[]
A) 90	B) 120	C) 60	D) 40	
18. The number of perm	utations of the word LA	APTOP is	[]
A) 240	B) 120	C) 360	D) 40030	
19. The number of comb	inations of five objects	among eight objects	s, if the repetitions are	
allowed and order is	not important is		[]
A) 645	B) 792	C) 896	D) 962	
20. The number of comb	inations of three object	s among six objects,	, if the repetitions are	
allowed and order is	not important is		[]
A) 56	B)96	C) 48	D) 120	
21. There are two group	s; each consists of fou	r questions each. If	a student is to answer	r 2 from on
group and 3 from and	other group, the numbe	r of ways that he can	answer is []
A) 48	B)24	C)72	D) 30	
22. The coefficient of x^5	y ² in the expansion of ($(x+2y)^7$ is	[]
A) 42	B) 84	C) 120	D) 96	
23. The coefficient of x^5	y in the expansion of (2	$(2x+y)^6$ is]]
A) 192	B) 128	C) 120	D) 144	
24. AUB =62, A =32, H	$B = 42$, then $ A \cap B =$]]
A) 24	B) 15	C) 36	D) 12	
25. The number of integ	ers<500 and divisible b	y 3 or 6 or 7 is]]
A)214	B) 248	C) 324	D) 194	
26. The number of integ	ers<250 and divisible b	y 7 or 11 is	[]
A)54	B) 48	C) 74	D) 9	
27. The co-efficient of (2	$x^3 + x^4 + x^5 + \dots)^5$ is=]]
A)126	B)127	C)125	D)none	1
28. The solution of linea	r recurrence relation is	methods	[]

			QUESTION BANK	2019
A)4 B))3	C)2	D)none	
29. Which method ,the solut		,	,]
A)substitution B)	characteristic root	C)step by step	D)none	
30. When fn= 0, then the equa	tion is		[]
A)homogeneous	B)non-homog	geneous C)no	one	
31. If the characteristic equa]
A) $a_n = b_1 2^n + b_2 (-1)^n$	B) $a_{n=}(b_1+2b_2)$	$(-1)^n$ C)(2b ₁ +(-1)	b_2) r^n D)none	
32. The solution of linear no			[]
$\mathbf{a})\mathbf{a}_{\mathbf{n}}=\mathbf{a}_{\mathbf{n}}^{(\mathbf{h})}+\mathbf{a}_{\mathbf{n}}^{(\mathbf{p})}$		$+A_2n^2$ C)Ab ⁿ	D)none	
33. $\sum a_n x^n$ is equal to		2	[]
A) $a_0+a_1x+a_2x^2+\cdots$	B) $a_0x + a_1x^2 + a_2x^2 + a_3x^2 + a$	a_2x^3 + C) $a_0 + a_1 X$	D)none	
34. Solving recurrence relati	on fortypes		[]
A)2	B)3	C)1	D)none	
35. The generating function	of 1 is		[]
A) $\frac{1}{1-x}$	B) $\frac{1}{1+x}$	C) $\frac{1}{1-2x}$ D) $\frac{1}{1-2x}$	x -2x	
36. The generating function	of 3 ⁿ is		[]
A) $\frac{x}{1-3x}$	B) $\frac{x}{1+3x}$	$C)\frac{1}{1+x}$	D) $\frac{x}{1-x}$	
37. The generating function	of n is		[]
$A)\frac{1}{1+x}$	B) $\frac{1}{1-x}$	$C)\frac{x}{(1-x)^2}$	$D)\frac{1}{(1-x)^2}$	
38. The generating function	of 1+n is		[]
$A)\frac{1}{1-x}$	B) $\frac{1}{1+x}$	$C)\frac{x}{(1-x)^2}$	$D)\frac{1}{(1-x)^2}$	
39. The generating function	of the sequence 1,	-2,4,-8,16is	[]
A) $\frac{x}{1+2x}$	$\mathbf{B})\frac{1}{1+2\mathbf{x}}$	$C)\frac{x}{(1-x)^2}$	D) $\frac{x^2}{(1+2x)^2}$	
40. The exponential generation	ing function of the s	sequence 1,1,1,1	.is []
A) e ^x	B) e ^{-x}	C) e^{2x}	D) e^{-2x}	

UNIT V

GRAPH THEORY

	Gf	KAPH THEORY	
1. A regular graph of deg	gree has no lines.		[]
A) 0	B) 1	C) 2	D) 3
2. The maximum degree	e of any vertex in a simp	le graph with n vertices is	[]
A) n	B) n+1	C) n-1	D) n+2
3. A graph G has 21 edg	ges, 3 vertices of degree	4 and other vertices of degree	3. Find
the number of vertices	in G.		[]
A) 10	B) 11	C) 12	D) 13
4. The maximum numb	er of edges in a simple g	graph with n vertices is	[]
A) n(n-1)/2	B) (n-1)/2	C) n(n+1)/2	D) n(n1)
5. A graph which allows	more than one edge to j	oin a pair of vertices is called	[]
A) Simple graph	B) Multi-graph	C) Null graph	D) Weighted graph
6. A simple graph G, in	which every pair of dist	inct vertices are adjacent is ca	lled []
A) Simple graph	B) Multi-graph	C) Null graph	D)Complete graph
7. A binary tree T has n l	eaves. The number of n	odes of degree 2 in T is	[]
A) n-1	B) n	C) n+1	D) 2n
8. The total number of ec	lges of a complete graph	$h K_n$ is	[]
A) n	B) n ²	C) $\frac{n(n+1)}{2}$	D) $\frac{n(n-1)}{2}$
9. A graph without edges	s is called agraph		[]
A) trivial graph	B) null graph	C)infinite graph	D) simple graph
10. A graph is regular,	if the degree of each ver	tex is	[]
A) same	B) not same	C) always zero	D) always one
11. A graph G has 21 ec	lges, 3 vertices of degre	e 4 and other vertices of degree	e 3. Find
the number of vertices in	G.		[]
A) 10	B) 11	C) 12	D) 13
12. The maximum degree	ee of any vertex in a sim	ple graph with n vertices is	[]
A) n	B) n+1	C) n-1	D) n+2
13. Eular's rule is			[]
A) v+e+r=2	B) v-e+r=2	C) ve-r=2	D) v+er=2
14. A planar graph has o	nly infinite region(s	3).	[]
A) one	B) two	C) Three	D) four
Transforms and discrete r	nathematics		Page

		Ç	UESTION BANK	2019
15. If a connected plana	r graph G has e edges, v	vertices and r regions, the	n []
A) v+e+r=2	B) v-e+r=2	C) ver=2	D) v+er=2	
16. A connected graph	that contains an Euler Ci	rcuit is called	[]
A) Euler trail	B) Semi-Euler grap	h C) Euler graph	D) Hamilto	n graph
17. A complete bipartite	graph $K_{m, n}$ is planar if a	nd only if	[]
A) m>3 or n>3	B) m<3 or n> 3	C) m<=3 or n-	<=3 D) m>=3 o	r n>3 b
18. A graph $G=(V,E)$ is	called a graph if its	vertices V can be partition	ed into twosubsets	1
V_1 and V_2 such that e	ach edge of G connects	a vertex of V1 to a vertex of	of V2 []
A) simple	B) bipartite	C) complete bij	partite D) multi g	raph
19. The chromatic numb	per of completebipartite	graph is	[]
A) 1	B) 2	C) 3	D) 0	
20. A complete graph w	ith n vertices will have _	edges	[]
A) (n-1)(n-2)/2	B) n(n-1)/2	C) (n-2)/2	D) n(n-2)/2
21. A graph which allow	s more than one edge to	join a pair of vertices is ca	illed a []
A) simple graph	B) null graph	C) multi graph	D) Pseudo gr	aph
22. If G is a connected g	raph with n vertices and	m edges, a spanning tree of	of g must havee	dges
A) n	B) n+1	C) n+3	D) n-1 []
23. A given connected g	raph is a Eular graph if a	nd only if all vertices of G	are of []
A) same degree	B) even degree	C) odd degree	D) Differen	nt degree
24. An through a g	raph is a path whose edg	e list contains each edge o	f the graph exactly	y once.
A) Eular path	B) Eular circuit	C) Eular graph D)	Eular region []
25. An is a graph t	hat possesses a Eular cir	cuit.	[]
A) Eular path	B) Eular circuit	C) Eular graph	D) Eular re	gion
26. A circuit in a connec	cted graph which include	s every vertex of the graph	n is known as []
A) Eular	B) Universal	C) Hamiltonian	D) Clique	•
27. If G is agraph within	vertices, then a Hamilto	nian cycle in G will contai	in exactly ed	ges
A) n-1	B) n	C) n+1	D) n+2[]
28. The length of a Ham	iltonian path in a connec	eted graph of n vertices is	[]
A) n-1	B) n	C) n+1	D) n+2	
29. A circuit in a conne	cted graph which include	es every vertex of the grap	h is known as	
A) Eular	B) Universal	C) Hamiltonian	D) Clique []
30. The number of colo	rs required to properly c	olor the vertices of every p	lanar graph is	
A) 2	B) 3	C) 4 I	D) 5 []

		QU	ESTION BAN	NK 2019
31. The vertices of a planar graph with less than 30 edges is colorable]
A) 1	B) 2	C) 3	D) 4	
32. A simple co	32. A simple connected planar graph with 17 edges and 10 vertices cannot be			ble
A) 1	B) 2	C) 3	D) 4 [[]
33. The chrom	33. The chromatic number of an isolated vertex is]
A) one	B) two	C) three	D) four	
34. The Chromatic number of a graph having atleast one edge is atleast			[]
A) one	B) two	C) three	D) four	
35. Every	graph is 5colorable		[]
A) simple	B) bipartite	C) planar	D) Euler	r